Quantum Materials Fabrication and Analysis at BNL User Facilities

Mingzhao Liu
Co-design Center for Quantum Advantage (C²QA)
Center for Functional Nanomaterials

Workshop on DOE User Facilities for Quantum Information Science
January 12-13, 2022
BNL team for QIS user support

NSLS II

CFN

One of 5 DOE Nanoscience Research Centers (NSRCs)
Understand and mitigate superconducting qubits loss

- T_1 for 2D transmon qubits had been limited to ~ 0.1 ms due to TLS loss at capacitor/resonator surface
Correlate material properties with qubit performance

- Identify key material proxies to infer qubit coherence at low T
- Build stronger synergy between BNL and C²QA device efforts

Synchrotron X-ray spectr.
TEM; X-ray diffraction
Magnetron sputtering
PPMS

Surface Proxies
Structural Proxies
Synthesis & Processing
DC Transport Proxies
Resonator Proxies

Post-fab survey
Device Fabrication
T₁/T₂
RF Low T Measurement

Cleanroom facilities
Dilution refrigerator (Princeton, Yale)
Niobium-based qubits

Deposition

- Sputtering
- HiPIMS Optimized
- HiPIMS Normal

T_1 dependence on Nb deposition technique

- HiPIMS = High-power impulse magnetron sputtering

Qubit device with Nb capacitor/resonator and AlO$_x$/Al/AlO$_x$ JJs

T_1 dependence on Nb deposition technique

Oxidation at surface and grain boundaries

- HiPIMS Normal (worst) film has smallest grains
- Native oxide and oxygen diffusion along grain boundaries
Nb surface chemistry studied by XPS depth profiling

- XPS profiling with 7 different incident energies
- Native oxide on Nb is about 10 nm thick
- Nb forms suboxides beyond Nb\(_2\)O\(_5\)
- Worst film forms most diffusive oxide layer with high fraction of suboxides
Replacing Nb with bcc-Ta ($T_c = 4.3$ K) brings 3x longer T_1

- Ta can grow epitaxially over sapphire
- Native oxide on Ta is thin and simple (Ta^{5+} dominated), but still an oxide (likely amorphous)
Ta still oxidizes

- Forming native oxide of 2-3 nm thick, universal across all sources
- Amorphous, host of TLS
- Surface treatment may lower loss
- Resonator Q as proxy for qubit lifetime
In-situ/ex-situ XPS depth profiling

- XPS profiling w/ 17 incident energies
- Study of oxide variation by wet/dry chemical treatments
- In situ study of oxide removal/regrowth during annealing

Princeton-BNL team

- 7-ID-1
 - HAXPES
 - 0.15– 2.2 keV

- 7-ID-2
 - HAXPES
 - 1.5– 7.5 keV

- 23-ID-2
 - In situ and operando XPS
 - 0.25 - 2 keV
Polymorphism of tantalum

- Sputter deposition of Ta easily leads to a metal stable β–phase
- A superconductor with $T_c \sim 0.8$ K
- Undesired due to more quasiparticle contribution

Two Ta films deposited at similar conditions

- α-Ta (bcc)
- β-Ta (tetragonal)
Robust fabrication of crystalline, bcc-Ta film

- Yale-Princeton-BNL team
- Film growth + XRD survey
- High sensitivity to substrate temperature
Electron microscopy

- Fully epitaxial growth of Ta on a-plane sapphire (CFN) -- most previous studies was on c-plane sapphire
Synchrotron X-ray diffraction

- X-ray powder diffraction (XPD) & pair-distribution function (PDF)
- Film ordering & homogeneity w/ 500 μm spot
- Both in-plane and out-of-plane ordering
- High-throughput screening
Low temperature transport properties

- New facility at CFN: Quantum Design DynaCool PPMS with 12 T magnet
- 3He sub-Kelvin insert (~350 mK base)
- Multi-function probe for custom experiments
Resonator device fabrication

- Hanger type Ta CPW (coplanar waveguide) resonator fabricated in CFN Cleanroom
- Using Princeton patterns
- Reactive ion etching gives sharp, straight edge profile
LEEM/XPEEM on qubit device

XPEEM/LEEM:
- Surface potential mapping
- Local work function
- Surface chemical composition mapping
- Local chemistry (μXPS)
TM silicides for superconducting qubits

- Superconducting qubits on silicon substrate
- Silicides form on silicon-metal interface
- Superconducting TM silicides -- compatible with CMOS
- Use superconducting silicides as for silicon-compatible Josephson junctions and resonators

<table>
<thead>
<tr>
<th>Silicide</th>
<th>T_c (K)</th>
<th>Silicide</th>
<th>T_c (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb$_3$Si*</td>
<td>19</td>
<td>Sc$_5$Ir4Si${10}$</td>
<td>8.4</td>
</tr>
<tr>
<td>V$_3$Si</td>
<td>17</td>
<td>LaRu$_3$Si$_2$</td>
<td>7.3</td>
</tr>
<tr>
<td>Ba3Si${46}$</td>
<td>8.07</td>
<td>AlCaSi</td>
<td>6.2</td>
</tr>
<tr>
<td>α-ThSi$_2$</td>
<td>3.16</td>
<td>Lu$_2$Fe$_3$Si$_5$</td>
<td>6.1</td>
</tr>
<tr>
<td>W$_3$Si$_2$</td>
<td>2.84</td>
<td>Al$_2$CaSi$_2$</td>
<td>5.8</td>
</tr>
<tr>
<td>LaSi$_2$</td>
<td>2.3</td>
<td>Li$_2$IrSi$_3$</td>
<td>3.7</td>
</tr>
<tr>
<td>CaSi$_2$</td>
<td>1.6</td>
<td>LaPtSi</td>
<td>3.5</td>
</tr>
<tr>
<td>CoSi$_2$</td>
<td>1.4</td>
<td>LaRhSi$_2$</td>
<td>3.4</td>
</tr>
<tr>
<td>Mo$_3$Si</td>
<td>1.4</td>
<td>LaRhSi$_2$</td>
<td>2.3</td>
</tr>
<tr>
<td>PdSi</td>
<td>0.93</td>
<td>ZrIrSi</td>
<td>1.7</td>
</tr>
<tr>
<td>PtSi</td>
<td>0.88</td>
<td>LaIr$_2$Si$_2$</td>
<td>1.6</td>
</tr>
</tbody>
</table>
CoSi$_2$-based Josephson junction

- CoSi$_2$-Si-CoSi$_2$ coplanar Josephson junctions
- On p$^{++}$ Si wafer (no carrier freeze out) for S-N-S junction
- Junction width W below 100 nm

- CoSi$_2$ constriction for S-c-S type junctions
- On intrinsic Si wafer
CFN quantum material press (QPress)

- **Automate study of 2D heterostructures**
 - 3-year DOE QIS project (since FY 2019)
 - Reliably fabricate complex stacks of atomically-thin (2D) materials
 - Understand physics of exfoliation
 - Study QIS materials
 - Non-expert access to frontier synthesis

- **Partnerships**
 - P. Kim, A. Yacoby (Harvard)
 - D. Shahrjerdi (NYU)
 - Broader user community
QPress modules

Exfoliator
- CFN custom roll-to-roll design
- Reproducible control of exfoliation process
- Enables rapid generation of exfoliated substrates

Cataloger
- Optical microscope with integrated Raman imaging/AFM
- Machine-vision identifies/classifies flakes
- Generate “flake libraries”

Stacker
- Robotic control of stamp and sample
- Build heterostructure stacks, such as graphene/hBN

Cluster tool
- Custom design from Lesker
- Installed and operating in CFN
- Robotic transfer between stations
 - Through vacuum/inert atmosphere (glovebox)
 - Thermal/plasma processing
 - E-beam deposition (multiple targets)
QPress science progress

- **Bound States in Graphene Heterostructure**
 - Identify new quantum confinement resonance in twisted graphene bilayers
 - Developed special TiO\(_x\)-coated SiO\(_x\) substrates

- **Build heterostructures**
 - Generate graphene library using QPress exfoliator
 - Built hBN/graphene/hBN heterostructures using QPress stacker (~6× faster fabrication)
 - Demonstrated high-performance FETs from heterostructures
Future QPress

- **Complete commissioning/integration**
 - Continue to refine modules
 - Integrate into single software framework
 - Deploy data tools for automated experiments

- **Facility expansion**
 - Integrated Multimodal Characterization and Processing (QM-IMCP;$6.9M, 3 years since FY ’22)
 - Processing heterostructure materials with atomic level precision at a new atomic layer etching tool
 - Characterization of electronic states, magnetic imaging, and chemical analysis at the upgraded synchrotron-based microscope
 - Analysis of carrier dynamics at an upgraded optical ultrafast-microscope
 - Mapping the electrostatic potential of atomic defects and single spin detection at the new scanning probe microscope (SPM) with quantum sensors, making direct connection with C2QA efforts

QM-IMCP

Low-Temperature Multimodal Characterization

- Synchrotron spectro-microscopy
- Ultrafast magneto-optical microscopy
- SPM with quantum sensor

Material Synthesis

Precise Processing

- Plasma Treatment
- Atomic layer etching