Photosynthetic biohybrids

Solar energy conversion of water into environmentally clean fuels, such as hydrogen, offers a promising means for meeting long-term global energy needs.  Our group is developing new energy conversion strategies that couple photosynthetic reaction center (RC) photochemistry to the direct synthesis of energy-rich molecules.  We have successfully coupled both Pt-nanoparticles and synthetic first-row transition metal catalysts to RC photochemistry.  Both types of hybrids rapidly generate H2 in aqueous conditions upon exposure to visible light.  In addition, we have targeted the development of mini reaction center/catalyst hybrids that enable the spectroscopic characterization and monitoring of dynamic light-induced catalytic intermediates for 2H+ + 2e- →  H2 in aqueous solutions.  These small protein hybrids replicate and utilize essential design features of RCs and photosynthetic networks by combining protein scaffolds with tailored abiotic cofactors and synthetically tuned photosensitizers.  In recent work, we showed the self-assembly of hybrid systems within photosynthetic membranes and demonstrated Z-scheme electron flow from the light-driven water oxidation at PSII can drive H2 production from PSI, thus accomplishing complete solar water splitting.  This is an important step forward to creating living photosynthetic systems that are sustainable, scalable and provide renewable clean energy from sunlight and water.

Select Publications

L. M. Utschig. Preface to the special issue: photosynthesis-inspired biohybrid and biomimetic systems. Photosyn. Res., 2020, 143, 97-98. link

U. Brahamachari, R. Pokkuluri, D. M. Tiede, J. Niklas, O. G. Poluektov, K. L. Mulfort, L. M. Utschig. Interprotein electron-transfer biohybrid systems for photocatalytic H2 production. Photosyn. Res., 2020, 143, 183-192. link

L. M. Utschig, S. R. Soltau, K. L. Mulfort, J. Niklas, O. G. Poluektov. Z-scheme solar water splitting via self-assembly of photosystem I-catalyst hybrids in thylakoid membranes. Chem. Sci., 2018, 9, 8504-8512. link

S. R. Soltau, J. Niklas, P. D. Dahlberg, K. L. Mulfort, O. G. Poluektov, L. M. Utschig. Charge separation related to photocatalytic H2 production from a Ru-apoflavodoxin-Ni biohybrid. ACS Energy Lett., 2017, 2, 230-237. link

S. R. Soltau, P. D. Dahlberg, J. Niklas, O. G. Poluektov, K. L. Mulfort, L. M. Utschig. Ru-protein-Co biohybrids designed for solar hydrogen production: understanding electron transfer pathways related to photocatalytic function. Chem. Sci., 2016, 7, 7068-7078.

S. R. Soltau, J. Niklas, P. D. Dahlberg, D. M. Tiede, O. G. Poluektov, K. L. Mulfort, L. M. Utschig. Aqueous light-driven hydrogen production by a Ru-Ferredoxin-Co biohybrid. Chem. Commun., 201551, 10628-10631. link

L. M. Utschig, S. R. Soltau, D. M. Tiede.  Light-driven hydrogen production from Photosystem I-catalyst hybrids. Curr. Opin. Chem. Biol., 201525, 1-8. link

Contact Lisa Utschig for more information.