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VERIFI Fuels Work
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VERIFI Enables Integrated Development of Fuels and Engines

Approach: a system-level, iterative feedback loop - new feedstocks, processing,
combustion science, modeling, real-world testing, optimization, and life-cycle analysis
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Fuels that have been explored via the VERIFI
Integrated Process

= Fatty Acid Methyl Ester Biodiesels Dual Fuel Combinations

from the following feedstocks — Diesel / Natural Gas
— Soybean — Diesel / Gasoline
— Cuphea — Diesel / Ethanol
— Jatropha — Biodiesel / Ethanol
— Karanja
=  Fuel Additives

= Alcohols — EHN
— Ethanol - C2
— Propanol = C3
— Butanol-C4
— Pentanol - C5

— Hexanol - C6
— Phytol - C20



Creating a new, alcohol fuel, Phytol

= Metabolic engineering efforts at Argonne have designed strains
that can be produced in large quantities by photosynthetic
bacteria eventually producing a (really) heavy alcohol called
Phytol (C,,H,,0)
= Biological process from bench level work is sugar based (no specific
feed-stocks have been assessed)

tetramethyl-2-hexadecen-1-ol
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= The physical and chemical properties such as density, cetane
number and heat of combustion are close to that of diesel fuel

= P5, P10, P20 blends of Phytol and diesel were made (by volume)

and compared against baseline diesel experiments highlighted
above



Phytol Fuel Properties

Fuel Property Diesel Phytol
Carbon content [wt%] 86.64 80.62
_ _Hydrogen content [wt%]__ _____ 13.01_____ 13.5 __
: Oxygen content [wt%] 0 6.05 |
. _ Molecular weight [g/mole]__ ____~170_____ 296.54 _ ]
mmmm) Sulphur content [ppm] _______ 11.2 <10 __
' Heat of combustion [k)/keg] 44,463 43,584 |
I Cetane number 47.7 45.9 :
___Density @25°Clkg/m?] __ ____849.2 _ __ 8509
i Vapor pressure @ 25°C[Pa]” = 1000~~~ T < <1 _:
| Heat of vaporization [kl/kg] 361 130
| _ _ _Viscosity @ 25°C [eStL __ ___ __ 3.775__ ___ 63.54_ _,
Boiling point [°C] 320 (T,,) 203




Biofuel engine experiments with o
“Precious” fuel (low quantities) - =
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N
Biodiesel Fuel Mechanism Reduction Methodology

Computational time: N2~ N3

Range of operation:
v’ Pressure: 1-100 atm

|
|
Detailed Mechanism (from LLNL) :
3329 species, 10806 reactions ! : .
pedt ' . v Equivalence ratio: 0.5-2.0
|
|

G v Initial temperature: 700 — 1800 K
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115 species, 460 reactions?
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Rapid Compression Machine

Investigations of Fuel Chemistry / Autoignition

B Acquire fundamental data needed to understand fuel effects in future combustion engine

validate chemical kinetic models at engine-relevant condltlons (T, p, , EGR)
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Fuel Design for LTC Engines

NEED NEW FUEL QUALITY METRICS FOR DEPLOYMENT

Chevron
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RON / MON are inadequate metrics

=74 AK
+ B4 AKI

g

+
+

£ — 87 AKI
. » 87 AKI
3 4 87 AKI (.
+ 87 AKI [
+ Diesel

- L
. TOM
0

BSFC [g/kWh] [he==
% !

g

0 10
BMEP [bar]




VERIFI X-Ray Experiment
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Pioneering Fuel Spray Research at APS
Provides Valuable Data to Manufacturers

100 ps after SOI Extensive Hydrogrinding
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. Images show mass distribution within sprays
. Provides quantitative near-nozzle data critical for accurate modeling



Quantifying Shot-to-Shot Variation in Sprays

t=0.4971 ms
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e Can gquantify variability in fuel distribution in units of mass
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Investigating Natural Gas Injection

= |ndustrial collaborator (Westport 10.0
Innovations) interested in
improving their piezo DI natural gas
injectors
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= (Quantitative measurements of gas
jets difficult, density gradients
cause refraction of visible light -10.0
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= X-rays can quantify the gas density 0 5 10 15 20 25 30

= First measurements used argon gas Axial Position (mm)
= Provides quantitative data never

before available -: 3 -

= Being used for simulation 0 Mass/Area (ng/mm’) 20
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X-ray Imaging of Fluid Flow Inside Diesel

Injectors

s e B = Recently, we discovered that
s A e bubbles are pulled into the
injector after the end of injection

=  Simulations done at Argonne
have helped to understand the
mechanism

= These bubbles are important

Time = 0.002147
" |nan engine, they will be hot combustion \

products. May lead to injector damage

= Ascylinder pressure falls, bubbles will
expand. Fuel will be pushed into cold engine,
causing emissions

ElemToNode_alpha

1.0008+000
7.500e-001 i

\

= Additional simulations underway

5.000e-001
2.500e-001
0.000e+000

Battistoni & Som, Argonne
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Time-Resolved X-Ray Measurements of

0.00 ms =  Plastic Nozzle

= Partially degassed fuel
= Reveals gas along the walls
— Cavitation or dissolved gas?
= Bubbles coming out of solution
— Buoyant, 60 m/s in center of flow

= Collapsing bubbles cause pressure
waves in fuel

= Trapped layer of fuel along wall

= Real fuel systems have lots of
dissolved gas.

=  Future measurements will
attempt to distinguish vapor from
dissolved gas
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