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• Fuel is typically injected as a liquid 
• Combustion occurs only in the gas phase 
 ⇒ atomize liquid to enhance evaporation    

• Atomization process controls combustion:  
– local mixture composition ⇒ pollutant formation 
– combustion stability 
– turbulence generation  

⇒ to optimize combustion, one needs to optimize the liquid fuel atomization 

• However, fuel spray characterization as used in traditional CFD is highly 
calibrated, and thus not predictive 

UTRC

Motivation
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• Many details of liquid atomization in applications are still unknown 
‣ experimental access is difficult  

or often impossible 
‣ even with optical access, spray drops  

obscure the atomization process 
‣ some new experimental techniques: 

- ballistic imaging (time gating photons) 
- phase contrast X-ray (Advanced Photon 

Source @ Argonne National Lab) 

• Can we use simulations (CFD) to study and predict atomization? 
‣ need governing equations describing the flow ⟹ Navier-Stokes (continuum limit) 
‣ need numerical techniques to solve the governing equations 
‣ need computers to apply the numerical techniques and find solutions 

• Goal: CFD as a first principle, predictive discovery tool 
⟹ no tuning parameters!

Diesel Spray (Helsinki University)

Diesel Spray (Spiekermann et al., 2007)

Motivation
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• Numerical Challenges for First Principle Predictive Simulations 
– discontinuous material properties 
– singular surface tension forces 
– complex phase interface geometry 
– frequent topology changes 
– interaction with turbulence 
– inherently three dimensional 
– vast range of scales: from cm to µm ⇒ multi-scale 

• Multi-Scale Simulation Approach 
– split atomization into primary & secondary atomization 
– track the complex phase interface geometry during  

primary breakup ⟹ resolve all scales 
– assume simple phase interface geometry for  

secondary breakup and use Lagrangian spray models 
– couple both 

4

Motivation
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Resolve interface dynamics during primary atomization 
Capture the phase interface by

Primary Breakup Phase Interface Treatment
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➡ But: Due to range of scales in primary atomization, one never resolves all the  
scales one would like ⇒ notoriously under-resolved

- Level Set 
• overset high resolution meshes  

(Refined Level Set Grid method) 
‣ high-order finite difference 
‣ non-conservative 
‣ resolved interface scale independent  

of resolved flow scale  
‣ unstructured flow solver meshes

Topology changes occur automatically 
- inherent breakup length scale ~ grid size 

Hypothesis:  
- local flow mesh resolution sufficient so topology change initiation is physics driven 
- interface mesh resolution sufficient so numerical breakup doesn’t impact resulting drop sizes 

- Volume of Fluid 
• un-split geometric transport with 

PLIC interface reconstruction 
‣ arbitrary unstructured meshes  
‣ fully conservative and bounded

OR
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Small drop flow physics typically not resolved by local 
flow solver mesh 

Lagrangian approach more appropriate 
- full two-way coupling of momentum based on drag laws 
‣assumes simple shape: spheres 
‣point particle approximation: drop volume << cell volume 

- stochastic secondary atomization model (Apte et al. 2003) 

Requires coupling procedure = Drop transfer algorithm

Secondary Breakup & Small Drops

6
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➡ Identify all separated liquid 
structures with 

–   

–   

➡ Insert into Lagrangian 
spray model preserving 
position, mass, and momentum

7

(for details see JCP, 229, pp. 745–759, 2010 & CTR 2005) 

Drop Transfer
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➡ Identify all separated liquid 
structures with 

–   

–   

➡ Insert into Lagrangian 
spray model preserving 
position, mass, and momentum
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Drop Transfer

(for details see JCP, 229, pp. 745–759, 2010 & CTR 2005) 

• re-transfer from Lagrangian to 
Eulerian interface capturing if necessary
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• Example: 25,000 randomly placed, mono-disperse spheres 
• grid size: 2048 x 2048 x 2048

Parallel Drop Transfer Algorithm

9

initially seeded 
spheres
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Parallel Drop Transfer Algorithm
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• Example: 25,000 randomly placed, mono-disperse spheres 
• grid size: 2048 x 2048 x 2048

identified & 
removed drops
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Parallel Drop Transfer Algorithm
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• Example: 25,000 randomly placed, mono-disperse spheres 
• grid size: 2048 x 2048 x 2048

remaining drops: 
dumbbell structures rejected 
due to shape criterium
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remaining drops: 
dumbbell structures rejected 
due to shape criterium

Parallel Drop Transfer Algorithm
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• Example: 25,000 randomly placed, mono-disperse spheres 
• grid size: 1024 x 1024 x 1024 & 2048 x 2048 x 2048

10
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• Navier-Stokes equations for two-phase, incompressible flows in non-conservative form: 

• For finite volume Navier-Stokes solver control volume cv: 

• Surface tension force        by Continuum Surface Force (CSF): [Brackbill et al. 92]

: liquid density, viscosity

: gas density, viscosity

: surface tension force

: surface tension coeff.

: surface mean curvature
: marker function
: level set scalar
: volume fraction

Governing Equations

T� = ⇤⇥c

�
�c�f

⇥c�f
�⌅(G)

⇥

f�c

Balanced Force Method

(see M. Francois et al. 2006)
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Flow Solver
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- structured Cartesian or cylindrical 
- 2nd order finite volume 
- discretely kinetic energy conserving 
- balanced force surface tension force 
- phase interface remains discontinuity 
- dynamic Smagorinsky LES in the 

single phase regions 
- Lagrangian spray drop/parcel model 

with full two-way coupling and 
stochastic secondary atomization 
model (Apte et al. 2003) 

- interface capturing by RLSG level 
set on high-resolution overset mesh 

- drop identification and transfer 
algorithm 

Results from two different flow solvers

NGA (Desjardins et al. 2008) CLIFF (Cascade Technologies)

- unstructured arbitrary polyhedra  
- 2nd order finite volume 
- discretely kinetic energy conserving 
- balanced force surface tension force 
- phase interface remains discontinuity 
- dynamic Smagorinsky LES in the 

single phase regions 
- Lagrangian spray drop/parcel model 

with full two-way coupling and 
stochastic secondary atomization 
model (Apte et al. 2003) 

- interface capturing by geometric 
unspilt VoF on flow solver mesh 

- drop identification and transfer 
algorithm
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Diesel Jet Atomization

• Conditions: 
– Injector diameter: D = 100 µm             
– Injection velocity: 100 m/s              
– Density ratio: 850 / 25                    
– Viscosity ratio: 1.70.10-3 / 1.78.10-5                  
– Surface tension coeff.: 0.05 N/m      
– Characteristic numbers: Re = 5000, We = 17000   
– Inlet profile:  DNS of Re = 5000 turbulent pipe                      
– Domain size: 20D x 8D x 2π                   
– Drop transfer Dmax: 16.8µm            
– Lagrangian description: no secondary atomization, no collisions    

– Grid type: cylindrical (flow solver) & Cartesian (RLSG)                          
– Flow solver resolution: ∆xmin = D/50 = 2µm, D/100 = 1µm, D/200 = 0.5µm      
– RLSG resolution:  ∆xG = D/64 = 1.56µm, D/128 = 0.78µm, and D/256 = 0.39µm             
– Maximum grid sizes: 210 million (flow solver) & 5 billion w/ 390 million active (RLSG)        
– Cost: 14/40 days on 256 cores (1.8 teraflops total)                                  

D
D

8D

15D

liquid

no-slip

no-slip conv.
outlet

20D

Experiment: Spiekermann et al. (2007)
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Diesel Injection: Drop Size Distributions

N = 186,000

Drops resulting from primary atomization

flow solver: ∆xmin = 1µm

N = 186,000
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Flow Solver Grid Impact on Distributions
drops resulting from primary atomization
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Breakup Length Scale Impact on Distributions
drops resulting from primary atomization

flow solver grid: 
∆xmin = 1µm

N = 890
N = 85,000
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Breakup Length Scale Impact on Distributions
drops resulting from primary atomization

flow solver grid: 
∆xmin = 1µm

N = 890
N = 85,000
N = 186,000
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Breakup Length Scale Impact on Distributions
drops resulting from primary atomization

flow solver grid: 
∆xmin = 1µm

required interface grid 
resolution for grid 

independence: 
∆xG = D/6

all smaller drops are 
likely numerical 

artifacts
≈ 6∆xG
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