Impact of Secondary Breakup Model

VoF = 0.5 iso-contours

Drop-Sizes: Impact of Grid Resolution and Secondary Breakup Model (SBM)

High-Shear Nozzle Injector

• High shear injector with inner and outer swirl

Radial inflow swirler details

Swirler Design

- # of slots = 15 each for inner/outer
- Area ratio (i:o) = 82:18
- exit diameter = 0.8 inch

Fuel Injector Design

- six fuel orifices (0.025 inch)
- angled 60° from centerline

lesearch Cente

Full Swirling High-Shear Nozzle Injector

	UTRC
momentum ratio	9.4
Gas Weber number	155
Primary Atomization	shear breakup
Injector Diameter	0.635 mm
Estimated Hinze scale	38 micro-meter
Measured Dp_min	10 micro-meter

	Case 1 (coarse grid)	Case 2 (fine grid)
Number of grids	18,000,000	240,000,000
Min grid size	D/8 (80 μm)	D/32 (20 µm)
Secondary breakup model	Stochastic	w/ & w/o Stochastic

Flow Visualization

November 12th, 2014 High Fidelity Simulations of Atomization in ICE and Complex Gas Turbine Injectors

Near Injector Region

Velocity magnitude contours

Qualitative Comparison

• Near-field photo

November 12th, 2014

High Fidelity Simulations of Atomization in ICE and Complex Gas Turbine Injectors

Qualitative Comparison

Near-field photo – attempt to include exposure effects

Quantitative Comparison: Spray Angle

Simulation

Experiment (UTRC)

High-speed photograpy

November 12th, 2014

High Fidelity Simulations of Atomization in ICE and Complex Gas Turbine Injectors

External Flow Quantification: Fuel Flow

• 1.1" measurement plane

• 1.6" measurement plane

High Fidelity Simulations of Atomization in ICE and Complex Gas Turbine Injectors

experiment: symbols simulation: lines

Drop-Size Distribution

Drop-Size Distribution

Drop-Size Distribution

High Fidelity Simulations of Atomization in ICE and Complex Gas Turbine Injectors

Scalability and Cost

• 75% parallel efficiency up to 4096 cores on DoD Spirit (due to CPU/network speed ratio)

DOD	Spirit Cluster
сри	Intel Sandy bridge
cpu speed	2.6GHz
total nodes	4590 (73,440 cpus)
core/node	16
memory/node	32Gbytes

Computational time (210M cells, 2048 cpus)

 $D/u_{jet} \approx 6.6$ hours $L_z/u_{gas} \approx 4.3$ days 1.1in plane \approx 1.2 days

Summary

- Predictive simulations of complex, realistic fuel injectors are conceivable:
 - unstructured meshes & flexible heterogeneous, anisotropic mesh refinement to concentrate resources into primary atomization region
 - hybrid approach combining interface capturing (level set or VoF) & Lagrangian spray models
 - can be done with existing parallel resources
- Potential straightforward coupling to combustor simulations due to Lagrangian spray description
- Future challenges
 - multicomponent fuels
 - compressibility & supercritical injection

