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Motivation

RANS
 Main approach for 

industrial applications
 Calculation of averaged 

quantities

LES
 Research tool => 

emerging in industry
 Able to predict cyclic 

fluctuations 2) DNS
 Not attempted so far
 Numerical Experiment
 All fields are fully resolved 

available

Results depend on resolution and models
(turbulence, heat transfer, flame speed, etc…)
=> Validation necessary 

1) Experiments
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Mixture

Flow / 
Turbulence

Chemistry

Physics:
 Wide range of length and time scales:

 Turbulence/Mixing: μm / ms
 Chemistry: μm / ns [1,2]

 Large number of species and reactions

Engines:
 Complex geometries (scales cm, s)
 Moving piston and valves
 Large differences in spatial and temporal 

resolution requirements within the cycle

⇒ Enormous number of DOF
⇒ Huge amount of output data

Challenges of DNS Calculations in Engines

[1] Maas, U., & Pope, S. B. (1992). Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Comb. and Flame, 88 (3), 239-264
[2] Koch, T.  (2002) Dissertation LAV / ETHZ
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DNS solver: nek5000 + LAV plugin
nek5000
 DNS code based on spectral element method

 Scales to > 524,000 CPUs  

 High order accuracy

 Complex geometries

 ALE mesh movement

LAV plugin
 Low Mach number reactive flow solver [1]

 Detailed kinetics and transport (CHEMKIN)

 Gas phase & catalytic combustion

[1] A. Tomboulides et al., JCP (1988), JSC (1997)
[2] S. Kerkemeier, (2010) Autoignition of a hydrogen jet in a hot turbulent co-flow, JFM, 2013

Mixture Fraction [2]
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Parallel scaling

- 7B grid points (E=2.1M, N=15)
- 71% parallel efficiency with ~32,000 grid points/core 
- performance up to 0.172PFlops (19% of peak) 

Incompressible flow benchmark, Jülich SC 

- 0.73B grid points (E=1M, N=9)
- 89% parallel efficiency with ~5,500 grid points/core 
- performance up to 55.5TFlops (12.5% of peak) 

Reactive flow benchmark, ANL BG/P 

Stefan Kerkemeier, PhD Thesis ETH Zurich no. 19162, 2010 
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Imperial College experiment [1]
 Valve-piston assembly
 Turning speed = 200 rpm, Compression ratio = 3
 Mean and RMS velocities extracted from Laser Doppler Anemometry (LDA) 

measurements (ensemble based statistics)
 Setup used in previous RANS/LES studies [2]

[1] Morse, A.P., Whitelaw, J. H. & Yianneskis, M. 1979,. J. Fluids Eng. 101, 208–216.
[2] Liu, K. & Haworth, D. C. 2010 Flow Turb. Combust., 85, 279–307.

Ø = 75 mm

α

40 mm 

zp(t)

30 mm 
16.8

20.8

33 mm 

α = 60°
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Solver and Simulation setup

Boundary Conditions:
 Velocity at piston and inlet

 Zero velocity on other boundaries

 Thermal boundaries fixed at 500K

 Zero flux species boundary conditions

Numerics:
 Spectral element solver: nek5000 (ANL)

 LAV plugin for low Mach number 
combustion

 7th order spatial discretization

 3rd order time integration

inlet

piston
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Studies carried out so far
Calculate intake/exhaust stroke (total 
8 cycles) [1]

 Validation with experiment (LDA)

Investigate cycle-to-cycle dynamics 
(total 11 cycles) [2]

Close valve at BDC and simulate the 
compression (total 8 cycles)

 flow, mixing, reactions

 wall heat transfer [3]

235°CABDC - 180°CA 320°CA

90°CA77°CA45°CA

10 0 
Velocity
Magnitude [m/s]

Axial velocity [m/s]
(0.375 mm from wall)
0.84                   -0.84

Heat flux density [W/m2]

-1.3E5 -5.3E5

[1] Schmitt et al., Phys. Fluids 26 [2] Schmitt et al., accepted to Phys. Fluids     [3] Schmitt et al. Proc. Combust. Inst. 35

Velocity
Magnitude [m/s]

70 

http://dx.doi.org/10.1063/1.4868279
http://dx.doi.org/10.1016/j.proci.2014.06.097
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Instantaneous velocity magnitude
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Comparison Simulation - Experiment

90°CA Vel. 
mag. 
[m/s]

0

10

Experiment   Simulation

Streamlines: Axial Mean Vel.
144°CA

Very good agreement for all 
available experimental data 

Axial RMS Vel.

Schmitt, Frouzakis, Tomboulides, Wright & Boulouchos, Physics of Fluids 26, 035105

http://dx.doi.org/10.1063/1.4868279
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How to use the DNS data?

1) Validation data  2) Understanding of 
the physical processes

[m2/s2]
tke

[m2/s2]

7

0

3

0

60°CA 90°CA90°CA

𝑣𝑣𝑟𝑟′𝑤𝑤𝑤
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Cycle-to-Cycle Variations (CCV)

Cycle 4 Cycle 6

Schmitt, Frouzakis, Tomboulides, Wright & Boulouchos, accepted for publication in Phys. Fluids
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Intake process and vortex ring formation

Vortex ring at 180°CA

Schmitt, Frouzakis, Tomboulides, Wright & Boulouchos, accepted for publication in Phys. Fluids

10 0 

Velocity
Magnitude [m/s]

90°CA 144°CA36°CA
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0

-6

Initial Conditions vs. Jet Flow
Cycle 7

0.7

-0.7

Radial velocity
[m/s]

TDC - 0°CA Pressure
[Pa]

22.5°CA

22.5°CA 45°CA 67.5°CA

4

0

8

0

10

0

vmag
[m/s]

vmag
[m/s]

vmag
[m/s]

Schmitt, Frouzakis, Tomboulides, Wright & Boulouchos, accepted for publication in Phys. Fluids
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Jet Center Position

Cycle 5

Schmitt, Frouzakis, Tomboulides, Wright & Boulouchos, accepted for publication in Phys. Fluids
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Impact on next cycle

Schmitt, Frouzakis, Tomboulides, Wright & Boulouchos, accepted for publication in Phys. Fluids
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Summary - CCVs

Radial velocity
at TDC

Jet center
at 45°CA

Vortex ring 
at BDC

Cycle 4

Cycle 5

Schmitt, Frouzakis, Tomboulides, Wright & Boulouchos, accepted for publication in Phys. Fluids
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 DNS performed of engine-like geometry (11 consecutive cycles)
 Dynamic system identified which is responsible for the CCVs in this 

simplified geometry
 Results cannot be applied one to one to real engine configurations, but:
 First description of cause-effect-relationships of CCVs in engine-like geometry
 Results are a base for investigating CCVs in realistic engine geometries
 Some findings are likely to apply also for more realistic engine geometries

 Excellent platform for the validation of LES simulations to capture CCVs 
(cause and effect relationships can be directly tracked)

 Ongoing and future work:
 Compression stroke, wall heat transfer, combustion
 Higher engine RPM, more realistic configurations
 Establish database for model validation purposes

Conclusions and outlook
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Thank you!
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