

Proudly Operated by Battelle Since 1965

Progress in Battery Research in Selected Areas

Jun Liu

Pacific Northwest National Laboratory Richland, WA 99352

Acknowledgement: Jason Zhang, Jie Xiao, Yuyan Shao, Jie Xiao, Xiaolin Li

Funding:DOE Office EERE Batt,Joint Center for Energy Storage Research (JCESR)

Proudly Operated by Battelle Since 1965

DOE has made significant investment in the development of battery systems

From Khal Amine

Electrode Materials: Hierarchical Structures Control Morphology and Chemistry on Mutilscale

Cross section EPMA of precursor and (FCG) from Carbonate Process

Hierarchical Structures in Si Anode Materials

Accomplishment

pomegranate-inspired design for Si anode

Cui group, Nature Nanotechnology, 9, 187 (2014)

Proudly Operated by Battelle Since 1965

Accomplishment

-Battery performance

Proudly Operated by Battelle Since 1965

Accomplishments – Hierarchical electrode designs to improve energy density

Sonication spray

Secondary composite particles electrode

Advantages: Large micron size porosity, and stable dimension

SEM image of Si/PFM Secondary particles

Precipitate in methanol
Lawrence Berkeley National Laboratory

Since 1965

Accomplishments – Hierarchical electrode designs to improve energy density

Electrochemical performance of the Si secondary particle composite electrode

Update on Si-based High Capacity Anode

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Pacific Northwest National Laboratory

Objective: Develop low cost, scalable methods for high capacity, stable, Si-based anodes. Collaborators: Mike Sailor/UC San Diego, John Lettow/Vorbeck Inc.

Prepare and optimize mesoporous silicon sponge (MSS):

Particle size: ~ 20-40 μ m Pore size ~50 nm

Morphology of electrochemically etched Si

(In collaboration with Prof. Sailor of UCSD)

Particle volume change of Mesoporous Silicon Sponge (MSS)

Proudly Operated by Battelle Since 1965

In situ TEM images before and after lithiation:

 Nanoparticles with the size > 200 nm break after deep lithiation In situ TEM images of macroporous Si before and after lithiation:

- •Expansion along the channel direction = 13.1%
- Expansion perpendicular to the channel = 7.8% Diffraction pattern: fully amorphized after lithiation
- Volume expansion~30% after lithiation which is much less than ~300% volume expansion in other Si.

Porous Si Electrode of ~1.5 mAh/cm² With and without Pre-lithiation Provide Since 195

- Specific capacity: ~750 mAh/g (based on the full electrode)*
- Capacity retention: ~96% after 300 cycles
- First cycle irreversible loss is greatly reduced after prelithiation

Total electrode loading: ~2 mg/cm² Si loading: ~1 mg/cm² * See technical backup slides

Li et al, accepted for publication in Nature Communications

Effect of FEC

FEC Reduction and SEI formation Mechanism

XPS analysis on Li/F ratio

Elements samples	Li	С	0	F	Li/F ratio
Electrolyte (a), 2 cycles	27.7%	23.3%	24.1%	24.9%	1.11
Electrolyte (a), 35 cycles	22.7%	31.3%	37.6%	8.4%	2.70
Electrolyte (b), 2 cycles	22.9%	32.5%	32.1%	12.5%	1.83
Electrolyte (b), 100 cycles	21.0%	33.8%	31.9%	13.3%	1.58
Electrolyte (c), 2 cycles	21.1%	34.7%	32.2%	12.0%	1.76

(a) 1M LiPF₆ in EC/DMC (1:2 in vol), (b) 1M LiPF₆ in EC/DMC (1:2 in vol) with 10% FEC and (c) 1M LiClO₄ in pure FEC

- The ratio of Li/F in SEI layer formed in the FEC containing electrolyte is much larger than 1 and is not consistent with the value predicted by the conventional reduction mechanism.
- In the FEC-free electrolyte, composition of SEI film change significantly with increasing cycle number due to selective reduction of solvent.
- In the FEC-containing electrolyte, composition of SEI film does not change significantly with increasing cycle number, indicating the formation of stable protection layer.

Effect of FEC: Reduction and SEI formation Mechanism

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

- Lithium poly(vinyl carbonate) is a solid polymer with high tensile strength (good SEI).
- ROLi is the reduction products of alkyl carbonates and serves as strong bases to remove HF

Chen et al, ChemSusChem, 7(2), 549–554 (2014).

Na ion chemistry is very sensitive to electrolytes and SEI formation

(B) (**D**) (\mathbf{C}) 20nm 200nm 20nm 100nm

SEI on Sn alloy/c anodes

L. Jie et al, Advanced Materials, 2014

Liquid electrochemical cell enable in-situ TEM using real electrolyte: lithiation

• In-situ TEM study of battery using true electrolyte, paving the path for in-situ study of SEI layer

Lithiation of Si (coated with Cu on one side to increase the electron conduction) in EC-DMC based electrolyte by holding the potential at 0.03V range

M. Gu, L. R. Parent, L. Mehdi, R. R. Unocic, M. T. M., R. L. Sacci, W. Xu, J. G. Connell, P. Xu, P. Abellan, X. Chen, Y. Zhang, D. E. Perea, L. J. Lauhon, I. Arslan, J. Zhang, J. Liu, Yi Cui, N. D. Browning, and . Wang, Nano Letters, 2013

Supported by JCESR

In-situ experiments provide information about the battery chemistry

Proudly Operated by Battelle Since 1965

J. Hu, J. Xiao, J. Liu et al, supported by JCESR

In situ Electronic Paramagnetic Resonance^{Pacific Northwest} (EPR) Provides Direct Evidence of S₃[•] Radicals

Manuscript in preparation

- Concentration of S₃ radicals demonstrate periodic changes during cycling. (A radical battery!)
- What are the roles of sulfur radicals in the electrochemical process?

Potential of Mg Batteries

	Li	Mg	Note	
Melting point / °C	180	650	Cofoty	
Reactivity in air	High	Low	Salety	
Volumetric capacity/ (mAh/cm ³)	2062	3832	Energy	
Electrode potential/ V (vs SHE)	3.04	2.37	density	
Price of metal/ (\$/ton)	65K	2.7K	Cent	
Earth Abundance/ ppm	20	23K	COSL	

Safe, cost-effective, high energy density (potentially).

→ Conventional electrolytes (simple salt+ solvent) → Specially designed Mg complex electrolytes,

1. Mg anode/Electrolytes: SEI-free interface

performance depending on solution coordination

2. Cathode: Slow solid-state diffusion of divalent Mg²⁺

 $\rightarrow Mo_6S_8$ (128mAh/g, 1.1V)

3. More and more

Limited fundamental understanding.

Levi, et al. *Chem. Mater.* 2010, 22, 860–868 Aurbach, et al. *Energy Environ. Sci.*, 2013, 6, 2265–2279

How coordination affects performance: structure-property relationship

Shao, et al. *Sci. Rep.*, 2013, DOI:10.1038/srep03130

Enhanced Stripping Efficiency

Sol: Increased denticity and ligand strength can favor entropy effect and drive force of Mg²⁺ complexion.

2. Lobkovskii, et al. J. Struct. Chem. 23, 644-646 (1982).

 \rightarrow

 BH_4^- : Increasing BH_4^- concentration should also favor kinetics of Mg^{2+} complexion, thus CE.

→ next slide.

- Solvents and [BH₄-] (ligands) affect Coulombic efficiency (CE) and current density dramatically: Diglyme>DME>THF
- 2. CE=100% for Mg(BH_4)₂/diglyme with LiBH₄ concentration of 1.0M and beyond.

Pacific Northwest Further exploration on solvent effect Proudly Operated by Battelle Since 1965

Long chain glymes \rightarrow strong interaction with $Mg(BH_4)_2 \rightarrow high$ dissociation \rightarrow high electrochemical property

→ Polymer PEO electrolyte?

Spectrum/ppm		DFT Calculation		
1G	15.3	22.26	Mg ₂ (BH ₄) ₄ -(DME) ₃	
2G	13.5	21.23	Mg(BH ₄) ₂ -DGM	
3G	8.12	5.961	Mg(BH ₄) ₂ -3G	
4G	10.28	-12.597	Mg(BH ₄) ₂ -4G	
		7.329	MgBH ₄ ⁻ -4G	

NATIONAL LABORATORY

Performance of polymer Mg battery

0.4 0.06 Current / (mA/cm²) 0.2 0.03 0.00 Current / mA 0.0 -0.2 (a) (b) -0.4 -1 -0.06 0.8 0 2 3 1.0 1.2 1.4 1 E/V (Mg) E/V (Mg) 1.4 150 100 Capacity / (mAh/g) 1.2 100 E / V (Mg) 50 ~ 1.0 ШU 50 0.8 (d) (c) 0 0 50 100 50 100 150 0 0 Capacity / (mAh/g) Cycle #

- 1. Alternative anode with conventional electrolytes, like graphite, Si or Sn for Li ?
- 2. Slow Mg diffusion kinetics--- downsizing ?

2Bi + $3Mg^{2+}$ + $6e^{-} \rightarrow Mg_{3}Bi_{2}$ 385 mAh/g, 3770 mAh/cm³

Ref. Electrochemistry Communications, 2012, 16 (1): 103–106

Bi NT anode enabled high rate, stability

Proudly Operated by Battelle Since 1965

Bi-nanotube delivers ~4 times capacity of micro-Bi (5C rate) and stable cycling.

October 29, 2014

Shao et al. Nano Lett., 2014, DOI: 10.1021/nl403874y

Bi NT for Mg insertion/extraction

Proudly Operated by Battelle Since 1965

(e)

Reversible Bi+ Mg \leftrightarrow Mg₃Bi₂

Overall NT morphology

Interconnected NPs

Reversible reaction and structure integrity during discharge/charge

Bi NT anode enabled Mg ion battery

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

A=conventional Ely; B=Mg Ely

Compatible with conventional electrolyte.

- Significant effort and progress in electrode materials.
- More effort on how electrolytes improve the properties of electrode materials needed.
- Beyond Li-ion, such as Mg ion, still in very early stage..