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Outline 

 General introduction to X-ray Absorption Spectroscopy (XAS) 

       

 Case study 

 Capabilities of beamline 9-BM at the APS 

 

 Case 1 Mn species on anode: Capacity fading of LMO/C system 

      Argonne (Amine group) and Tsinghua Univ. (Qiu Group) 

 

 Case 2 In situ Li2S9 electrolyte measurement: initial study at 9-BM 

      Argonne (Amine group) and APS 9-BM 

 

 Case 3 In situ probes of sulfur redox processes for Li-S battery 

      Nazar group (general user at 9-BM)   
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General Introduction to X-Ray Absorption Spectroscopy (XAS) 

XANES              EXAFS 

EXAFS = Extended X-ray Absorption Fine Structure 

XANES = X-ray Absorption Near Edge Structure 
XAS 

Element of interest 
Orbitals probed: 

Density of unoccupied (available) states  
 K edge: sp closer to atom core 
 L edge: pd closer to atom surface 

 
Element specific 
Oxidation State 
Coordination environment (sometime) 

 
Electronic structure 
Interaction, bonding, local structure 
Coordination environment 
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X-Rays 

IR 

Capability of 9-BM 

- Ex-situ measurement: basic and 

Total Electron Yield (TEY) 

- In-situ measurement for battery  
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- Source: 1×1011 Photons/sec 

- Si(111): 2.1 keV to 24.4 keV 

- Users: 

- Geology, Earth Science 

- Material Science 

- Catalysis 

- Battery 

- 3d metals 

- Precious metals as catalysts 

- S: Li-S battery 

- K: K battery 



Case study 1: Capacity fading of LMO/C system 
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Vetter, J. et.al . Journal of Power Sources 2005, 147, 269. 
Whittingham, M. S. Chem. Rev. 2004, 104, 4271-4301 

Mn2+ 

Li+ 

Mn metal？ 

SEI layer 
LiMn2O4 cathode  LixC6 anode  

Dissolution-deposition of Mn from LiMn2O4 cathode to anode 

- Disproportionation at interface: LiMn2O4→ MnO2 + Mn2+ 

- Mn2+ dissolve and diffuse to anode 

- Reduction at SEI to form Mn metal 

- Inhibits Li+ diffusion / catalyzes electrolyte decomposition 

- Loss of active LiMn2O4 

- Impedance rising due to inactive products 
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Electrochemistry on the Mn deposition 

Li ion Insertion Potential 

LiMn2O4 

Li4Ti5O12 (LTO) 

LixC6 (MCMB) 

Li Metal  
0 V 

1 V 

2 V 

3 V 

5 V 

LiFePO4 Li(1-x)FePO4(delithiated LiFePO4 D-LFP) 

Cathodes/Positive electrodes 

Anodes/Negative electrodes 

Mn(II)/Mn(0) 

4 V 

- Reduction of Mn2+Mn 
- Speculation in literatures:  
      The lithiated anode has low chemical potential and high chemical activity 
- Hard to detect the extremely low concentration of Mn species 
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Mn species deposited on anode: Mn2+ instead of Mn metal 
Independence on cycling AND anode 

 

Mn-K XANES of standards and anode samples 

Nat. Comm. 4, 2437, 2013 
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Mn(II) deposition & Capacity fading 

Proposed model: Ion exchange instead of reduction 

Li+ path blocked 

- Mn2+ replaces active Li+ in SEI layer 

- Impedance rises at anode 

- Capacity fades in battery 



Beam 

Vortex detector 

- Material: stainless steel 
- Capacity: 8 mL 
- Gas in and out 
- Relief valve 
- Liquid injection port 
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- Heat (miniature cartridge) and cool (fluid) 
- Macor bar insulator 
- Mini stirring system 
- Thermocouple: control and over-T (window) 
- Kalrez O-ring (-15C327 C) 

In-situ liquid cell for intermediate energy (3 keV) 

Trick: window---THIN, SEAL, FLAT  
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Case study 2: Temperature effect on Li2S9 electrolyte 

 Strong absorption 2469.5 eV (white line) & a higher-energy 
feature  2476.8 eV: 1s → 3p transition of elementary sulfur  

 Features 2467.7 eV: characteristic of linear polysulfide 

 Very sensitive to the compounds 

S-K edge XANES: Li2Sx standards in solution (RT) 
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S-K XANES of Li2S9 electrolyte: RT vs. 60C 

Significant change in white line intensity: sign of S-S cleavage 
More work is on the way! 
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Case study 3: Operando XAS 

Mechanisms of Sulfur Redox on cycling of Li−S Batteries 

J. Phys. Chem. Lett. 4, 3227, 2013 

 Cathodes: sulfur impregnated in uniform porous carbon nanospheres (PCNSs) 

 -S8 and synthesized polysulfides Li2Sx (x=1.2.4.6.8)as references 

 Charge: pure elemental sulfur at the end  

 Discharge: Li2S + -S8 remaining at the end, +(linear polysulfide)  
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Evolution of S-K XANES  
linear combination of 4 reference compounds: α-S8, S6

2−, S4
2−, and Li2S 

J. Phys. Chem. Lett. 4, 3227, 2013 
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 Operando XANES identified sulfur species in the cell during cycling 
 Consistency between XANES evolution and electrochemical profiles Mechanism 

J. Phys. Chem. Lett. 4, 3227, 2013 



Harrick praying mantis cell X-ray 

IR 

Bruker Tensor 37 
- External sample compartment: modified 

to allow x-ray transmission 
- MCT detector 
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Other capabilities: Concurrent XAS & FTIR setup 

- Special DRIFTS cell dome for x-ray 
transmission 

- Sample holders with various path 
lengths for XAS 
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Polycapillary focusing optics 

- Small focused beam at the sample surface 

with diameters around tens of micrometers  

- Insensitive to beam motion  

- Increased intensity, enhanced spatial 

resolution 

- Mass Flow Control System, remote 

controlled by Labview program 

- Glovebox  handling air/moisture sensitive 

samples 

- Wetlab for offline sample treatment 

- Pfeiffer PrismaPlus Compact Mass 

Spectrometer System 

- Handling hazardous gases 

Other capabilities (continued) 
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Transmission mode Fluorescence mode 

Be window (250 m) 

Flight path(He-
purged) 

windows 25 m KaptonTM 

windows 

I0 

Flexible neoprene  
Bellows (He-purged) 

It 
 

SII Vortex 4-element 
Si-drift detector 

Beam 

moveable stage 

Catal. Today 205, 141-147 (2013).  

alignment 

Vacuum 

If 
 

19 



Why is the window flat? 

Advanced Photon Source, Argonne National Laboratory 
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High energy: ~ 11 keV 

Beam 

 
Detector 

Beam penetrates into the sample  
and fluorescence gets to the detector 

Intermediate energy: ~ 3 keV 

Beam 

 
Detector 

Liquids are generally very absorbing 
If the beam can get to the sample,  
the fluorescence is deflected backwards 
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